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During the past two yedr-s, a very substantial imount of progress has h'etn

made toward Lhe main goal of this project, which is to calculate the

activation energy of explosive molecules. The progress has come in the

form of four different approaches to the problem:

1) CI Calculations

It is well known that a full CI qives the best possible molecular

total energies and activation energies that can be computed for a

given basis set. However, since CI calculations can be very time-

consuming, one must have very fast programs and very large computers

in order to make the calculations feasible for explosive molecules

of interest. We have recently obtained Dr. Henry F. Schaefer's CI

programs, which are generally considered to be the best and fastest

in the world. In addition, we have access to several large Cray

computers, which are among the fastest in the world and are often

referred to as super computers. We have almost finished converting

Dr. Schaefer's CI programs to the Cray. Once we get these progrm'is

running on the Cray, we expect to perform very accurate CI calcula-

tions on many explosive molecules of interest. The new Cray version

of these CI programs and the calculations that will be done with it

are expected to arouse a large amount of interest in the scientific

community.

2) Gaussian 82

The Gaussian 82 computer package is generally considered to be The

"state of the art" program in the area of Moller-Plesset perturbation

theory. This type of perturbation theory, if carried to high enough

order, can yield very accurate results for molecular activation

energies. We have very recently obtained access to a new Cray version



of Gaussian 82 which is not yet available to the general public.

With the combination of this new program and the large Cray computers

to which we have access, we expect to perform activation enera,,

calculations that are better and more accurate than those that were

previously possible using Gaussian 82.

3) MNDOC

The MNDOC method is a semi-empirical technique which is very fast

and could therefore be used to compute the activation energies of

large explosive molecules. One indication of MNDOC's potential is

that it has yielded accurate values for the activation energy of

methyl nitrite. Further improvements are needed in this method

before it can be applied to a wide range of explosive molecules.

We have recently discovered a modification that may greatly improve

the method's accuracy. This modification consists of adding a two-

configuration SCF to the MNDOC programs. The two-configuration SCF

is expected to work well for molecules in which the ground state

and first excited state are close in energy.

4) Green's Function Techniques

We have recentiy used Green's function theory to derive a new one-

electron equation that goes beyond previous one-electron equations

to include higher order correlation terms. As correlation plays a

very important part in molecular reactions, this new equation is

expected to lead to siqnificant improvements in the calculation of

molecular activation energies.



Introduction

The goal of this project is to calculate the amount of shocking- or

jostling that a solid explosive can withstand before detonating. The ultimate

objective is to determine, by means of the calculations, how to modify the

explosive so that it still retains all of its explosive power but becomes

less sensitive to shock. These less sensitive but equally powerful explosives

would reduce the number of accidents that occur among personnel involved in

handling, storing, transporting, and using the explosives.

The detonation process is complicated and involves many factors,

including "hot spots", propagation of acoustic or detonation waves, inter-

action (or scattering) between detonation waves and explosive molecules, etc.

However, the key factor in an explosive's sensitivity to shock is the

activation enerqy of the molecules that make up the explosive. When an

explosive receives a shock, the enerqy of the molecules contained in the

explosive is increased. In the region of the shock, if the energy of a

sufficient number of molecules is raised above the activation energy, then

the detonation begins. Thus if one can increase the activation energy, a

bigrjer shock will be required for detonation and the explosive will be safer

to handle. -herefore the first step in the study of detonations is to

determine accurate values for the activation energy of the explosive molecules.

One can determine the activation energy of an explosive molecule by

calculating the total energy of the molecule as a function of a reaction

coordinate such as a bond length or bond angle. At the value of the

reaction coordinate where the total energy goes through a m.ximum, dissocia-

tion, or detonation, occurs,, and the activation energy is the difference

between this maximum total energy and the total energy of the molecule in

1tr , equtlihrium state. Thus in order to obtain accurate valies for



molecular activation elergies, one must be able to compute accurate values

for molecular total energies.

It is well known that in order to obtain accurate and useful values

for molecular total energies, it is essential to include correlation effects.

e have thoroughly studied four different methods for including correlation i,;

molecular calculations:

1) CI Method

2) Gaussian 82 Computer Program

3) MNDOC Procedure

4) Green's Function Techniques

Very substantial progress has been made in all four of these areas and they

all show great promise for yielding accurate molecular activation energies.

Each of these methods is described in detail below.

I
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I. CI Method

As mentioned above, a very attractive feature of a full configuration

interaction (CI) calculation is that it will yield the best possible molecular

activation energy that can be computed for a given basis set. Often it is

not necessary to carry the CI all the way to completion, but rather to

converge the CI to whatever degree of accuracy one desires for the molecular

activation energies. However, for explosive molecules of interest, an

accurate converged CI can be very time-consuming and therefore one must have

very fast computer programs and very fast computers in order to make the

calculation feasible.

1-10We have recently obtained Dr. Henry F. Schaefer's CI programs I  , which

are qenerally considered to be the best and fastest in the world. In

addition to acquiring these programs, we are at present making a major

improvement in their usefulness by adapting them to the Cray computers, which

are amon] the fastest computers in the world and are often referred to as

super computers. When this adaptation is coipleted, we will have the first

Sray version of Dr. Schaefer's CI programs, and in addition, we have access

to several large Cray computers on which to run the pro(Irams. As a result,

we expect to perform very accurate CI calculations on explosive molecules of

interest. The new Cray version of these CI programs and the calculations

that will be done with it are expected to arouse a very large amount of

interest in the scientific community.

In addition to their speed, another important feature of Dr. Schaefer's

CI programs is their ability to perform a tqo-configuration SCF and then

do a CI from that. While the starting point for CI calculations is usually

a sinrle-configuration SCF, or Hartree-Fock calculation, sometimes the CI will

converge significantly faster if the starting point is a two-confiouration

SCF. This is particularly true for molecules like nitromethane in which the
lp



ground state and first excited state are close in enerqy, and may also be

true for larger explosive molecules that contain the nitro group, such as

nitrobenzene and trinitrotoluene (TNT). Thus the two-configuration SCF

further increases the ability of Dr. Schaefer's programs to yield a converged

CI for explosive molecules of interest.

We now give a brief description of the CI method1 l2 The CI procedure

is used to solve the time-independent, nonrelativistic, rigid-nuclei,

electronic Schroedinger equation:

HY=E' (1)

where the Hamiltonian H, in atomic units, is given by

H VN1 + h - g v (2)

z B (3)

A-B r AB

2 A()

, A rA,

iJ r

11tre the upper-case Latin subscripts represent the (rigid) nuclei, the lower-

cae Greek subscripts represent the electrons, the Z's are atomic numbers,

anA. the r's (rAt, rA, r) are the distances between the particles. The V

erM i a constant since the nuclei remain fixed, and therefore we can ignore

it throughout the calculation.

In order to solve the Schroedinger equation, we write the wave function

o a linear combination of symnetry adapted configuration functions 4s

(6)

SS
s

wh re t e r I in a co b nt n, of ]A. =mit el- r1ofe i n'~ I . m l an t l' -. In -a



calculation, one need include only configurations of the same synmmetry as the

particular electronic state being investigated (the reference state), since

Hamiltonian matrix elements between configurations of different symmetry are

zero. Hence the configuration functions are chosen to have the symmetry of

the reference state. Since the total number of configurations of all

symmetries can be very large, the symmetry adaptation of the configuration

functions greatly reduces the size of the Hamiltonian matrix and simplifies

the calculation.

The coefficients cs are chosen to minimize the energy

E H (7)

according to the variation principle. The variation principle ensures that

the lowest calculated energy is an upper bound for the exact lowest eigenvalue

of !i (i.e., the exact ground state energy). It also ensures that the lowest

calculated energy for each symmetry is an upper bound to the exact lowest

eijenvalue of that particular symmetry. Thus if one is investigating an

excited state which is the lowest of a FKrticular symmetry type, one need

not include any lower states in the same calculation.

Application of the variation principle leads to the well-known eigenvalue

e ;.tion

pi Jt 100[tis-E~ ]c t  = 0 (8)

St t

,7 ich is solved, by standard techniques, for the eigenvalues [ and coefficients

c,. In the above equation, Hst and Sst are the Hamilton an and overlap matrix

Q.!o;:ients, respectively, and 6re given by

Hst = , t(9

st . , . (10)

, 4
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The main computational step in a CI calculation iq the evaluation of the

Hamiltonian matrix elements Hst

In order to construct the configuration functions and evaluate ths matrix

elements, one chooses a set of atomic basis functions A,. One then writes th2

atomic orbitals Ii as a linear combination of the basis functions

= p U1pi
p

where the coefficients Upi are determined by an SC: (self-consistent field) or

similar calculation. The evaluation of the Hamiltonian matrix elements is

greatly simplified if one chooses the atomic orbitals ¢ to be orthonormal

The Hamiltonian matrix elements are then given by

H z asth.. + bst (12)
is t J .a i j i j k i j k t g i j k z ( 2

st l3j ijkz

v,,ere

hi0 1- , i rl)1hl,, (-1 (13)

9~ k, r - i rl . (r2 I l i,( 5, r (14)I I

j k Ii Il k r2) g1 21 1~l)(:)(1

. the coefficients ask and bt are determined by a projective reduction
13 ijk

Pculation The integrals h and gijkl' which are called orbital

rs, can he obtained from analogous basis set integrals, hij and

* . by the trinsformation

L . = :: U . .h ( 1 5 )
ij p q.] pq

P11

p ik SI pqrs 
(16)

pqrs

wh ere

IIhpq = " p ' l l l  X ( l .  (17)

P1 p "



gpqrs :< Ip(l)xr("2)igl 2Ixq(rl)xs(r2) . (1 i)

The transformation of the two-electron integrals, 11q. (16), can be qjite time-

consuming and must therefore be handled efficiently.

To summarize, the major computational steps in a CI calculation are the

fol lowing:

1) Choose a basis set and compute the basis set integrals

2) Determine the orbitals by means of an SCF calculation

?) Transform the bjsis set integrals to orbital integrals

4) Choose and construct a set of symmetry adapte.d configuration

functions for the electronic state that is being investigated

5) Calculate the Hamiltonian matrix elements with respect to the

configuration functions

6) Compute the lowest eigenvalue(s) and eigenvector(s) of the

Hamil tonian matrix

As mentioned previously, a full CI calculation (one in which all the configura-

tions of a pirticular symmetry are included) yields the best possible total

energy that can be compu ted for a given set of basis functi is
P,

'I



I I. Gaussian '2 Co~n)Lu ter Progir jm

Th!e i.,s i an .. coputer program is tie Iatt in a series of ,ooccular

_rL tI pr.)irams by John Pople and his group at Carnegie-Mellon University.

-iss in I. is generally considered to be the "stdte of the art program in

tre ,ire- of perturbation theory, and as such it has the patential t'. yield

,verv acrate values for molecular activation energies. As in the case cf

t ,e culculations discussed previously, the perturbation theory calculation.:

can be very tiine-consuming and therefore very fast computers are needed to

Ibt in accurate results for explosive molecules of interest. We have recently

.Je si:bstantial progress in this area by gaining access to a new Cray

-er ion of aussian 2 that is :,ot yet available to the general public. in

,idition, we have access to several large Cray computers on ;hich to run the

-rAm.. With these facilities we expect to calculate activation energies

t. 'at are better -nd more accurate than those that have previously been computed

ti s aissin P? method.

.r0 of t re ma1din features of Gaursian ,2 is its capanil ity to perform

'.,c ter-Lo perturbation theory calcul ations up to fourth order. This

8inli i - !r ' r ;prove neqt over the prey OLIs version of the program,

. , pjr, ( carry .ll er-Plesset prturbation calculations up

,r many molecles, fooJrth ot ler Mller-Plesset perturbatinn

1(r, ,v-t o f thle c,,,o el jt iun entr jy and hence yiel d accurate

nrq i,. In a Idi Lon, Gaussian ojn perform coupled clustor

-,- .( ,r, ,nd or e r. The coupled cluster method also has the

:. , .ield accurate activation rnergies for explosive molecules.

p -
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Carrying out step I) of the iteritiots , we put >0 into [Lq. (13). Then

Eq. (13) becomes the one-electron Hartree equation:

[h(x)+V(x)]uOi(x) = Eoiuoi(x) (17)

and Gi is given, according to Eq. (12), by

uoi(x')Uoi(x)z .(18)

i E 0- i

itting .0 into Eq. (2), we obtain the corresponding zeroth order vertex

I ,nc t ion ,

C'12,3) 1 2)6(l 3) (19)

T:cr p:ttin] !0 and G into Eq. (3), we obtain the zeroth order polarization

P 5b9 2) - -iGo(12)G, (21) (20)

.CjL 7r . (4) and (5), yields the zeroth order dielectric function and

i reoned interaction

112) & [ ( ~ (21)

1( 2) fv 13 (32)d(3) (22)

.0 ? alxjve formul i for the palarization, iq. (20), is a wel -known result

CA 1 1 e the random phase apprux imation (RPA) and 0tnd WO are the RPA

.1electric function and screened interaction:

P 1?) P 5 11) (23)

P; 1p) (21



Eqs. (I)-(5) can be iterated to obtain Successively more accurate

expressions for , ' and P as functionals of G. At each stage of tie

iterations, the Green's function is determined by -, through Eqs. (12) and (13).

We start the iterations by setting equal to zero:

0 (16)

The iterations are then carried out in the follo.iing sequence:

1) EL determines GO through Eqs. (12) and (13)

2) 0 and G determine r0 through Eq. (2)

3) 0 and G0 determine P0 through Eq. (3)

4) P0 determines o and W0 through Eqs. (4) ind (5)

5) '0 and W0  determine .' and G1  through E(,s. (I 1 in nd (13) (i.e., I0

and 10  are substituted into Eq. (I) and then E(,s. I1 ,(12) and (13) are

solved sel f-consistently for and G)

and G, determine through [q. (2)

J ind G] deter! ine PI thr'ouqIh Eq. (3)

determines and ., through Eqs. (4) and (5)

) ] rld W] determine 2 and G2 through Dqs. (1), (1?) ind (13) (i . e

dfld l ire suhst ituted into E(;. (1) ,Ind trlcfl s ( ,(12) and (1 K are

solved self-consistently for 112 and G2)
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(1) (x 1 ,t1 )

where x includes space and spin coordinates (x) = (,) and is understood.

The Green's functicn satisfies th equation

i<- - - h(x,)-V(l)]G(12) - fj (13)G(32)d(3) = C,(12) (10)

v here h is the kinetic energy plus the interaction of the electron with the

nuclei, and V is the average potential:

V(1) = -ifv(l3)G(33')d(3) (11)

The Fourier transform of the Green's function with respect to time is given

LW

ui(x )ui(x)
G(x,x',E) = - (12)

i 1

where ) is the frequency, and the amplitudes u. and energies E. satisfy the
1 1

tvJllowing equation (which is the Fourier transform of Eq. (10)):

[h(x)+V(x)]ui(x) E U(x,x')u ix LiL (.,) (13)

V (x) = v( r, r" )O(x' )dx' (14)

,(X) = u(x)ui(x) (15)
iocc.

If the sel f-energy : is independent of frequency, then the ampl i tudes and

energies given by Eq. (13) are one-electron wave functions and energies, and

une can work in the one-electron picture.
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A. Green's Function Formalism

For a neutral system containing N electrons, one can use Green's function
21 -22

theory to obtain the following set of self-consistent equations for the

self-energy E, vertex function r, polarization P, dielectric function C, and

screened interaction W:

E(12) = ifW(l +3)G(14)i,(42,3)d(34) (1)

r(12,3) = 6(12)6(13) + ) -r-6 - G(46)v(67,3)G(75)d(4567) (2)

P(12) = -ifG(23)r(34,1)G(42)d(34) (3)

E:(12) = 6(12) - fP(13)v(32)U(3) (4)

W(12) = fv(13)c-l(32)d(3) (5)

., -re v is the bare instantaneous Coulomb interaction:

v(12) e2v(rr 2
)S(t llt 2 )  (6)

er2V( : ,r2) _, (7)
1P- 21

;e one-electron Green's function:

G(12) = -i [-,.(1)y'(2)>O(tl- t2 ) ,,+ 2 ; I ..( 2 t (8)'

1 tl-t 2, 1- t 2 )  
(9)

0 t V t 2

e is the charge of an electron, , is the Heisenberg field operator, and the

brackets indicate the ground statc expectdtion value. In the above

equations, we have used the notation
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above is the screened interaction used in the expansion of the self-energy.

This screened interaction greatly speeds up the convergence of the scries

for the self-energy.

The first term in the series for the self-energy leads to the screened
21 -23

exchange plus Coulomb hole (SECH) one-electron equation wiich is solved

self-consistently to obtain correlated molecular energies. The SECU

equation has never been used before in molecular calculations and, as

smentioned above, is expected to yield accurate values for molecular energies.

The second term in the self-energy series leads to a new one-electron

equation that goes beyond the SECH equation to include higher order correla-

27sion effects. This new equation, which we have called the SECH2 equation,

hi;s never been used before in either molecular or solid state calculations.

:1t is a completely new equation that contains even more correlation tkan the

4 Ch equation and is therefore expected t3 produce significant improvements

te calculation of correlated molecular energies. The basic Green's

f tion foriral ism, the SECH equation, and the SECH2 equation are described

i et,iiI in Sections A-C.

, ' . . .I " • .b.. m, - i -- k d, lm ,.= , .. m-. ' - .u -2 _. - . ---



IVCreen s Func t ion Tec hn i ques

"1o -2o
We have developed a new formal is! , 1.,sed on Green's function theory,

for including correlation in molecular calculations. To our knowledge, this

approach has never been applied to molecules. In this new formalism, one

uses Green's function theory to obtain a set of successively more accurate

expressions for the self-energy, which contains all of the exchange and

correlation effects. Using this new formalism, one can include correlation

effects in a successively more accurate way, until one obtains the desired

degree of accuracy for the molecular energies. In this process, new

molecular one-electron equations will be developed.

One of the main advantages of this Green's function formalism over

other perturbation type approaches is that the self-energy is expanded in

powers of a screened interaction rather than a bare Coulomb interaction. The

screening of the interaction greatly speeds up the convergence of the power

series for the self-energy.

iJrsinj only the first term in this series for the self-energy, we

21 -23
ubtained excellent results for solids. - The question is, can this

Green's function method also be applied to smaller systems such as molecules?

..4e now present very strong evidence that Green's function methods can be

* .acessfully applied to molecules. There is a very large literature on

the use of Green's function approaches to calculate correlated molecular

energies. References 28-85 refer to some of the authors who have

0 successfully applied Green's function techniques to molecules. These

p.ipers, which are only a partial list of the large body of publications in

this area, clearly show that Green's function approaches can be successfully

ippl ied to molecules.

Once aglin, it shculd be noted that what distinguishes the Green's

function method of this proposal from the Green's function methods cited
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is true, then including more excitations would increase the error produced by

this inconsistency. This would explain why 13WLN2, which has single, double,C
triple and quadruple excitations, gives worse results than BWEN, which has

only double excitations.

The BWEN method, which is fast and can thus be applied to relatively

large molecules, yields good results for the activation energy of methyl

nitrite. The results are not as good for nitromethane and thus some

improvements are needed before the BWEN procedure can be generally applied to

larger molecules. One possible improvement is the incorporation of a two-

configuration SCF into the MNDO method. The two-configuration SCF, rather

than a single-determinant SCF (HF), can then be used as the zero-order

reference state and the starting point for excitations in the BWEN second-

o-der perturbation treatment. The two-configuration SCF is expected to work

cwe~l for molecules such as nitromethane, in which the ground state and first

excited state are close in energy.

I.

I,

• •]
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Reaction Experiment20 MNDO/CI 9 BWE N BWLNI' BWEN2

CH 3NO2 - CH3 + NO2  59.0 46.5 48.2 35.8 29.1

Cis CH3ONO - CH30 + NO 41.1 53.1 37.1 33.3 28.2

Trans CH3 ONO CH30 + NO 41.1 38.1 33.0 27.3

Table I. Comparison of computed activation energies and experimental
values. Activation energies are in kcal/mole.
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Figure 3. Computed reaction path curves for the dissociation
of nitromethane. The arrow indicates the vertical
position of the experiimental activation energy.
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posit ion of the experimental activation energy.
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compared these with Engelke's MNDO/CI results1 9 and with experimental vai ies.

The MNDO/CI procedure used by [ngelke is MNDO pIus a minimdl C!, where this

minimal CI includes only the lowest double excitation. The calculated BWEN,

B'..ENl, and BWEN2 reaction path curves for the dissociation of CH30NO (cis and

trans) and CH3NO2 are shown in Figs. 1-3, respectively. The MNDO/CI curves

we calculated are shown for purposes of comparison. They are similar to the

results Engelke obtained. Table I gives our computed BWEN, PWENI, and BWEN2

activation energies and compares them with Engelke's MNDO/CI results and with
2g

experiment2 . As shown by the table, the BWEN activation energy for CH3 NO2

i, within 11 kcal/mole of the experimental value and is only a slight

improvement over, the MWDO/CI result. For CH3ONO, however, the BWEN calculation

is a substantial improvement over the MINDO/CI result, giving activation

energies that are within 4 kcal/mole and 3 kcai/mole of experiment for the

4 cis dnd trans stereoisomers, respectively. Engelke calculated the MN)O/CI

er;org 1 only or cis CH3ONO. For both CH30NO and CH 3NO2, the BW[Il activation

energies are not cs close to experimental values as the BWEN results are,

while the L'..?2 activation energies are even farther from experiment than the

Be,; il resuits. Thus for the activation energies of methyl nitrite and

n tromethune, BWE gives the best results. In both cases, these are improve-

;:ents uver the MNDO/CI results.

2 ince i'..Ii gives better results than BWENI and BWEN2 for the activation

ener gies GF CH3ONO and CI3NO2, it appears that the procedure that works best

larger molecules is standard second-order perturbation theory in which

tne zero-order reference state is the HF ground state. When a different zero-

order reference state (the lowest root of a two-configuration CI) is used but

the excitations are still with respect to the HF ground state, as in BWENl

and [, N2, the results do not appear to be as good. This may be due to the

inc nsistency of using excitations from the IF ground state while using a

zero-order reference state that is not the IF ground state. If this



13

.4

over a,1 states that are doubly excited with respect tu the HIF ground state.

The M>NDOC procedure also contains two variants of BWEN, called BWEI1 and

BWEN2. In the BWEN1 method, the zero-order reference state for the second-

order perturbation treatment is not the HF ground state but instead is the

lowest root of a two-configuration CI matrix, where the two configurations

are the IF ground state and the lowest doubly-excited state. The perturbation

expansion then extends over all configurations that are doubly-excited with

respect to the HF ground state. In the BI-JEN2 method, the zero-order reference

state is again the lowest root of the two-configuration CI matrix mentioned

above, but the perturbation expansion extends over single, double, triple and

quadruple excitations with respect to the 11F ground state. Since the BWE12

perturbation expansion extends over a larger configuration space than BWENl

does, BWEN2 is more time-consuming.

We considered the following reactions for the dissociation of CH3NO2

and CH3ONO•

CH 3 NO2  CH3 + NO2

CH3ONO - CH3 0 + NO

In these reactions, the dissociation releases highly reactive radicals that

then attack whatever is available, releasing more energy than the bond

breaking (or dissociation) required and thereby producing an explosion. In

the case of methyl nitrite, we calculated the activation energy for

dissociations proceeding from both the cis and trans configurations. As

methyl nitrite probably contains both configurations, the dissociations

could proceed either from both of them or from just one, with the other

first converting to it.

For the three reactions shown above, we calculated the activation

energies of the molecules using the BW[N, BWENl and BWLN2 procedures and

42
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III. MNDOC Procedure

( The MNDOC 1 6 method, which is a new correlated version of the MNWUO1 7

method, is a semi-empirical procedure for including correlation in calculations

of molecular energies. One of the advantages of semi-empirical methods is

that they are very fast. Due to its speed, the MNDOC method can be used to

calculate potential surfaces, transition states, and activation energies of

large explosive molecules. We have recently used the MNDOC method to calculate

the activation energy of methyl nitrite (CH3ONO) and nitromethane (CIi 3 NO2 ) 18

In the case of methyl nitrite, the computed results were in good agreement

with experiment, indicating that this fast method has the potential to yield

accurate molecular activation energies. The nitromethane studies have

suggested a modification of the M~iDOC procedure which is expected to

significantly increase its accuracy and thereby make it applicable to a wide

range of explosive molecules. We have already begun work on this new

mj ification, which is the incorporation of a two-configuration SCF into the

i.... procedure. The two-configuration SCF is expected to work well for

loslecules like nitromethane in which there is a small energy separation

het, een the ground state and first excited state. The two-configuration SCF

is also expected to work well for larger explosive molecules that contain

the nitro group, such as nitrobenzene and trinitrotoluene (TNT). The MNDOC

iie'Ihud and results are described in more detail below.

Second-order perturbation theory, which is very fast, forms the basis of the

MI method. The ljIjrDOC procedure uses Brill oui n-Wigner perturbation theory with

Lpstein-Nesbet energy denominators (bWEN). In the EWFN method, the second-

order perturhition theory is based on a single reference determinant: the

ilartree-F Hck (11F) ground state, and the perturbttion expansion extends over
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W 21 W0(12) (25)
RNA'

As shown by Eqs. (17), (18), (20), (21) and (24), the wave functions'and

energies that appear in the RPA formula for the dielectric function are

Hartree wave functions and energies. Therefore one shoJd use Hartrce wave

functions and energies to compute RPA dielectric functiuns.

Continuing the iterations with step 5), we put i 0 -d W 6  irt, i q. (1

to obtain the first order sel f-energy ,.1 anJ f ir",t .r'e, Yrce C I f u'.Gtionr Gl •

EI ( 1 2 )  , i J O,, +3QG (14)QO42,?j.n(.4 (26,)

sing Eq. (l.), Eq. (22) becomes

iI 12) = iGl1 2) o 2 (27)

This expression for Y is the first term in the expansion of : in powers of

the screened interaction W. The main puint here is that we are expanding in

a screenej interaction rather than a bare Coulurb interaction. The screened

interactior makes it possible to include more correlation while using fewer

terms in the expansion (compared to the usual type of bare Coulomb interaction

expansion).

II we ',nt to work in the one-electron picture, we must obtain an e.pression

f,- I that is independent of frequency. We will then put this frequency-

independent n into Eq. (13) to obtain the one-electron wave functions ui and

energies V. H 1 that are used to define Gl  (according to -Q. (12)). In order

IiI
to obtain a sel f-energy }l that is independent of frequency, we write the

screened interaction W0 as a bare Coulomb part plus a part W0 due to

polarization:

W,0 (l 2) v(1'2) + W (1+2) (28)
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It can be shown that WP(12) is a sharply peaked function of tl-t 2. Therefore

we will approximate W P in Eq. (28) by its integrated value times a function;

however, instead of 6(tI-t 2+n) we will use 6(tI-t 2 ) so as to pick up

contributions from both parts of the Green's fi-tion
2 1 -2 3

W (1'2) = WP(xt,x2,m=O)6(tl-t2 )  '29)

then becomes the screened exchange plus Coulomb hole (SEH) expression for

21 -23
the self-energy , which contains both exchange and correlation:

FSECH(x,x') = -Pl(xx')Wo(xx(3)O)

+ -- 6(x,x') [.o(X,X ,.)0)-.. ,, ,]

where

W o ( X , X , ,, = 0 ) = v ( r" r ) + - '0 X , . ,t ,

anJ 0, is the density matrix computed ijith the wuvo functions u i"

pl(x,x') = 1 o Ui (x')u i (x) (32)
iocc.

According to Eq. (22), we can write .0 in terms of

Wo(xI'X 2
'"=O) = fV(rl'r 3 ):O (x 3,x 2,0)dx 3  3

wiere ro x( ,x2, =O) is the static RPA dielectric function. A,. n(,te .., eicIer,

tIe RPA dielectric function corresponds to the Hirtree equatiun nO

0
calculated with Hdrtree wave functions and energies.

Putting ( which is independent of frequency, into Lq. (13), we

obtain the SECH one-electron equation:

k .1



[h(x)+V(x)]u W(x) + f YSECIl(x,x')u i  (x ')dx'  li u l i(x) (34)

which is solved self-consistently to obtain correlated wave functions and

energies. During this self-consistent process, the screening function co

remains constant (it is not recalculated each time with SECH wave functions and

* energies, but rather it is calculated once and for all with Hartree wave functions

and energies). The SECH wave functions uli and SECH energies E are used to

define the first order Green's function GI, according to Eq. (12):

U li (X')Uli(X)

Gl (x,x',w) w-E (35)

i -I

C

*

.aI

• -' " " .' ' 'm - f k ah | ml ~~u~u° mh m ll~w u ' ' h 'L -m l u m ' I



C. SECH2 FIuatiun

Putting x1  and G into Eq. (2), we obtain dri equation for- the first

order vertex function rI1

6E. (12)
Fi(12,3) = 6(12)6(13) + fJ_G,'(A5Y Gl(46)i' (67,3)Gl(75)d(4567). (36)

Then using Eq. (27) for El. Eq. (36) becomes

49
1(12,3) = 6(12)6(13) + iWo( 2)fGl(16)'1 (67,3)G1 (72)d(6 7 ). (37)

Solving the above equation for I'l, we obtain an infinite power series in WO:

71(12,3) 6(12)6(13) + iWo( 1 2)G1 (13)Gl(32)

W0 l +2)fG1 (63)GI (37)W 0 (6+7)GI (1 6)GI (72)d(67)

c iWo(1 + 2)fG1 (83)G1 (3'9)Wo(8
+9)G1 ( 6-)G 1 ( 97)W 0 ( 6+7)G(1 6)G1(72)d(6789)

+ (32)

Th;s and explicitly satisfy the Ward identity. Putting Eq. (38) for

Into Dq. (3), we obtain the first order, polarization P1 :

1 ' - G (21 )Gl(12)

,fG 1 (5] )G1 (1 6)W40(5£+L)G 1 (25)%1( 62)d( 56)

ifG (71)G I (18)W 0(7+U)GI (57)G I (86)W 0 ( 5 6)G, (25)G, (62)d(5678)

-f6 1 91)GI I O)Wo( 9+10 G, (I9) Gl 1 O, .4W ( 7+8) G, 57 )G, (86)W0 ( 5'6 )

x G(25) G, (62)d(567891O)

(39)

4
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The above expression for PI, like Eq. (38) for r", is an infinite power

series in WO. Putting P1 into Eq. (4), we obtain the corresponding first

order dielectric function cl

ci(12) = 6(12) - fPl(13)v(32)d(3) (40)

Then putting c, into Eq. (5), we obtain the first order screened interaction

W1(12) = fv(13)E 1 (32)d(3) (41)

Since the above expression for P1 goes beyond the RPA to include higher order

correlation terms, we call it the generalized RPA (GRPA) polarization, and we

call £, and W, the GRPA dielectric function and GRPA screened interaction

respectively:

PGRPA(12) = P(12) (42)

'-GPP p (12) = ci(12) (43)

WGRPA(12) = Wl(12) (44)

According to Eqs. (39) and (42), the GRPA formula for the polarization contains

both W0 and G. As mentioned previously, W0 is the RPA screened interaction

and is computed with Hartree wave functions and energies, while G is computed

with SECH wave functions and energies, according to Eq. (35). Thus both

Hartree wave functions and energies, and SECH wave functions and energies are

used in the computation of PGRPA and CGRPA.

I.,P
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Eq. (39) can be written as an integral equation if one defines the

two-body polarization iT by

7T(1 2 ,3 ,4 ) : 0(1 2 ,3 ,4 )

-}7(5,2,3,6)Wo0(5+6)'1;( 1, 5, 6,4 )d(56) (45)

where

IT(= -iG (12) G (34) (46)

Solving Eq. (45) for yields

,(1 ,2,3,4) = .Tj(1,2,3,4)

f7,0(5,2,3,6)Wo(5+6)no(l,5,6,4)d(56)

+fTT (7,2,3,8)WC(7+8)7O(5,7 ,  ,6)W0 (5G+6 ) 0( 1 ,5,6,4 )d( 567)

C-0(9 ,2,3, 0)w0 (9+10) 0 7,9,lO,8)Wo(7+8),O(5,7,8,6)

W0 (5'6)T(1 ,5, 6,4 )d( 5673910)

+ .... (47)

f one ,let ne,,

PI 12) 2 , ( 1 1 ,2)

'A! I u~es . (47), one obtains the fillon'1, 0,uation ior P

I . . I: .



12 2'1 l

S(2) = )W ( 2,1 61 'A

+J7( 7,1 ,1 ,8)w0 ( 7+8)i0( 5,7,8,6)W
O ( 5 +6)iO(2,5,6,2)d(5678)

-S0( 9, 1 ,i ,iO)Wo0(9+lo)" 0(7,9,l0,8)w0(7+8)-n0(5,7,8,6 )

+x WO(5+6) TTO(2, 5, 6,2 )d (5678 910O)"

+* . (49)

Then putting Eq. (46) for ,T0 into Eq. (49), one obtains Eq. (39). Thus P,(12)

is given by the integral equation (45) if one first solves Eq. (45) for 7T

and then uses Eq. (48).

One can solve Eq. (45) for N in terms of inverses if one defines the

inverses , and GA by

f f7'1,2,3,4 -, (4,6,5,1)d(14) = *(25), (36) (50)

1 (l,2,3,4)1- (6,3,2,5)d(23) = 1(15)6(46) (51)

-I

'T (1,2,3,4)- (4,6,2,5)d(24) (15) (36) (52)

1 -(l,2,3,4), (6,3,5j )d(13) = (25) (46) (53)

(1,2,3,;) iG- 1 (12)G (34) (54)
U

G (12)G 1 ( 2 3 )d(2) (13) (55)

rGI (12)G (31 )d(1) (23) (56)

where, dccording to Eqs. (46) and (54)-(5C),

S, 34) (4,6,5,1 )d(14) = 5 6((7()36)

K:: " -
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f71 0(1,2,3,4)no (6,3,2,5)d(23) = S(15),S(46) (58)

,( ,2,3,4)0 (4,6,2,5)d(24) = S(5) (36) (59)

fTT0(1,2,3,4)7T0 I(6,3,5,1)d(13) = o(25)6(416) (60)

ri Multiplying both sides of Eq. (45) by

I
7T (10,3,2,7) T0  (4,9,8,1)

f( integrating over coordinates 1,2,3 and 4, and then replacing coordinates

10,9,8,7 by 1 ,2,3,4 respectively, one obtains

7- (1,2,3,4) 7T 0 (1 ,2,3,4) + W0 (3+1 )6(12)3( 34 ) (61)

Using Eq. (54) for 0  , Eq. (61) becomes

7-I (1,2,3,4) G1 I(12)G1(34) + W0(3+1 ) (12)I(.;4) (62)

is then given by

,3,4) (1,2,3,4) -

[G- (12)G 1  (34) + (6'3) )(l2 ) I(34 ) ]-  6 3

,There the inverse is defined by Eqs. (50) - (53). After n(1,2,3,4) has been

calculated from Eq. (63), P1 (12) is then given by Eq. (48).

Contining the iterations with step 9), we put and W into Eq. (1) to

determine 2 and G2:

I

I

I



2 12) ifW ( +3)G 2 14)-l(42,3)d(34 ) . (64)

Putting Eq. (38) for F into Eq. (64), we obtain an infinite series for Z2:

_2(12) = iG2 (12)Wi(1+2)

-fG2 (14) (I +3)G1 (43)G 1 (32)Wo(4+2)d(34)

-ifG2(14)W I(I+3)G 1 (63)G 1 (37)W 0 (6+7)GI(46)G1 (72)Wo(4+2)d(3467)

+fG2 (14)W 1 (1+3)G1 (83)G1 (39)W0 (8+9)G1 (62)G 1 ( 97)W 0(6+7)G 1(46)

x G1(72)W 0 (4+2)d(346789)

+ ... (65)

.,e now define E2 to be the first two terms in the above series:

--;(12) = iG (12)Wl(1+2)

-fG2(14)W I(l+3)G I(43)G 1 (32)Wo(4+2)d(34) (66)

The above expression for Z is the first two terms in the expansion of z

4r powers of the screened interaction W, and G2 is the corresponding Green's

Srction. We will call 2 the second order self-energy since it contains the

firt and econd terms of the power series (it contains the W term and the W2

ermn), and we will call G2 the second order Green's function.

In order to continue working in the one-electron picture, we must obtain

an expression for E that is independent of frequency. We will then put this

into Eq. (13) to obtain a new one-electron equation that contains higher order

correlation terms. This new one-electron equation will yield correlated wave

functions u 2i and correlated energies E2i which, through Eq. (12), will yield

4
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the second order Green's function G2  In order to obtain a frequency-

independent expression for -2' we treat the screened interactions that appear

in , (i.e., W0 and W,) in the same manner as W0 was treated in the derivation of

the SECki equation. In other words, W0 and WI are written, according to

Eq. (28), as a bare Coulomb part plus a part due to polarization:

W0 (4+2) = v(4+2) + Wg(4+2) (67)

Wl(1+3) = v(l+3) + W(l+3) (68)

P1

Then we approximate WP and WP by their integrated value times a 6 function:

. 0 ( 2) =W(x 4 ,x 2,'=O)s(t 4 -t 2 +i) (69)

W P(1+3) =  W P(XlX3, = ) ( l t + (70)

:n some cases, ae remove the ql from the 6 functions in Eqs. (69) and (70)

s- as to pick up contributions from both parts of the Green's function,

,:cordincq to [rj. (29). In other cases, we retain the q in the . functions in

I-,s. (,5) and (70) so as to pick up contributions from only one of the parts

cf the Green's function. Since each of the Green's functions in Eq. (66)

ns two parts (c.f. Eq. (8)), then the second term of Eq. (66, yields eight

terms when Eq. (8) is substituted for G. By carefully considering the time

c ependence of the Green's functions in each of these terms and by using the

d ppropriate functions in each case, we obtain the following frequency-

independent expression for :C, which we call 21SCH2
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;5ECH2(xl ,x2) -p 2 (xlx 2 )Wl (x1 ,x 2,w =O)

+ 65(x!,x 2 )[W1 (x1 ,x 2, )-v(r 1,r2 )]

-f, 2 (xl 1 ,x4 )W1 (x 1 ,x 3 ,w=O)p 1 (x4 ,x3 )p1 (x 3 ,x 2 )Wo(x 4 ,x 2 ,w=O)dx 3 dX4

+ l2 f,2(xl 'x4 )W1 (xl x3 ,u=O)pl (x4 ,x3 )6(x3,x2 )[WO (x4,x2,u 
= O)-v(r 4 r2)]dxdx4

- fs(x1 ,x 4 )[Wl (x l1 ,x 3 , w=O)-v( rI ,r 3 )]pl (x4 ,x3) 1(x3 ,x2 )WO(x4 ,x2,w=O)dx3dx4

- f(x 1 ,x 4 ) [ W1 (x l ,x 3 , O)-v( r1 1r 3 )] P l (x 4 ,x 3 ) 6(x 3 ,x 2 ) [ WO(x 4 ,x 2 ,w )

-v ( V 4 ,r 2 )]dx3 dx4  (71)

where :,2 is the density matrix computed with the wave functions u 9.i

p2(xx') - :, u2 i(x)u2i(x) (72)I occ.

Ashown by Eq. (71, "SECH contains four higher order correlation terms (in

addition V the screened exchange and Coulomb hole terms). The first of these

Ier .rder terms is the product of two screened excha nges , the second is the

product of a screened exchange and a Coulomb hole, the third is the product of a

U ulrjmb hole and a screened exchange, and the fourth is the product of two

Cuulomh holes. Thus is a natural second order extension of the screened

exchange plus Coulomb hole self-energy -SECI"

Putting ESECHI2 into Eq. (13), we obtain a new one-electron equation that

qoes beyond the SECH equation to include higher order correlation terms:

[K x) V( x ) ] (xS) EC112(x,x')u.(x')dx' = E2 iu2 .(x) (73)

we cll this new equation the SECH2 equation. It is solved self-consistently

to obtain Wdve functions u2 , and energies E2i that have a high degree of

correlation. During this self-consistent process, the screening functions
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LO and L, remain constant (they are not recalculated each time with SECH2

wave functions and energies, but rather _0 is calculated once and for all

with Hartiee wave functions and energies, and l is calculated once and for

all with SECH wave functions and energies). Also pl remains constant during

the self-consistent process (p1 is calculated once and for all with SECH wave

functions). The only quantities that change during the self-consistent process

are the SECH2 wave functions u2i and the SFCH2 energies E2i.

The SECH2 equation is a new one-electron equation that has never been

useJ before in either molecular or solid state calculations. It is expected

to lead to substantial improvements in the calculation of correlated

J:', ecu ar energies.
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